Als de positie van 2000 of 1000 ertoe doet, dan ook deze van 100,200 en 300...dan bekom je in de berekening van wat Commy gelegd heeft zonder valsspelen een ander getal uit. Uiteindelijk ga je steeds een lager getal uitkomen voor de 1000 of 2000 omdat uit de overgebleven stapel steeds een grotere kans is om die lagere te trekken. De berekening die je daarna uitvoert, kan niet bij deze kansberekening, je gaat ervan uit dat je 2 kaarten trekt uit 10 (en geen 10 verschillende kaarten) en dat je de vorige getrokken kaart teruglegt.
Die posities van 100, 200, 300 doen er toe, maar hier wordt automatisch rekening mee gehouden wanneer je de kans berekent dat het allemaal kaarten onder de 400 moeten zijn.
Door bij de berekening van minstens 1x 1000 of 2000 rekening te houden met de positie en met het feit dat ze ook allebei kunnen voorkomen, houd je automatisch ook rekening met de positie van de kleine kaarten. Maar die complexere berekening hoeven we niet te maken, omdat we makkelijker kunnen uitrekenen wat de kans is dat er geen hoge kaart in de eerste 10 voorkomt.
Je hebt wel helemaal gelijk dat in mijn tweede berekening de kaarten teruggelegd worden, wat niet correct is.
Beter is uiteraard.
1- 10/20 * 9/19 = 76,3%, dus nog een ietsiepietsie meer.
Deze formule kan je makkelijk controleren als je de setting eenvoudiger maakt, en met 4 kaarten speelt waarbij kaart “1” 1000 voorstelt, kaart “2” 2000 en kaart 3 en 4 de kleine kaarten.
Permutatie van 4 kaarten geeft 24 mogelijkheden, waarvan enkel 3412, 3421, 4312 en 4321 de situatie is waarbij er geen dure kaart in de eerste helft voorkomt dus 1/6.
Met mijn aangepaste formule in dit vereenvoudigd voorbeeld krijg je
1-2/4*1/3=5/6 dat minstens een hoge kaart in de eerste helft voorkomt.
Zelfde redenering volgen voor de situatie in de proef geeft 76,3%